
Practical Compression for Multi-Alignment Genomic Files

Rodrigo Cánovas Alistair Moffat

NICTA Victoria Research Laboratory
Department of Computing and Information Systems

The University of Melbourne
Victoria 3010

Abstract

Genomic sequence data is being generated in massive
quantities, and must be stored in compressed form. Here
we examine the combined challenge of storing such data
compactly, yet providing bioinformatics researchers with
the ability to extract particular regions of interest without
needing to fully decompress multi-gigabyte data collec-
tions. We focus on data produced in SAM format, which
is particularly voluminous in nature, and describe storage
techniques that have the desired blend of attributes.

Keywords: Genomic data, lossless compression, lossy
compression, SAM format.

1 Introduction

Next generation sequencing machines produce vast
amounts of genomic data (Ansorge, 2009). This data is
valuable for the insights it allows now into the health of
individuals and whole populations, and will continue to be
of benefit into the future as medical knowledge grows. But
for genomic data to be long-term useful, it must be stored.
And with output files in the gigabyte range now being gen-
erated within an hour or less of technician time, and at a
cost of just a few hundred dollars, the mechanics of storing
them – and retrieving information out of them when it is
required – is a challenge. Bioinformatics researchers are
increasingly regarding big data storage facilities as being
fundamentally necessary to their operations.

In this paper we consider data stored in SAM
(Sequence Alignment Map) format files (Li et al., 2009).
These files can contain millions of reads, each produced as
a continuous fragment of data extracted from the process-
ing of a single genome, represented as a string of bases,
letters that indicate the fundamental molecules of DNA. A
number of meta-data fields are associated with each read
to form an alignment read, and some of these fields are
as expensive to store as the sequence of bases. Because
of the multiplicity of alignment reads extracted from each
genome, the repetition in the meta-data elements, and the
fact that they are stored as printable ASCII text, there is
considerable redundancy in SAM files. Our purpose in
this project is to identify and exploit that redundancy, and

NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy
and the Australian Research Council through the ICT Centre of Excel-
lence program.

Copyright c© 2013, Australian Computer Society, Inc. This pa-
per appeared at the 36th Australasian Computer Science Conference
(ACSC2013), Adelaide, Australia. Conferences in Research and Prac-
tice in Information Technology (CRPIT), Vol. 135, Bruce H. Thomas,
Ed. Reproduction for academic, not-for-profit purposes permitted pro-
vided this text is included.

develop a new compressed representation for SAM-style
genomic data that is both economical of space and readily
queryable, so that data about particular alignments can be
extracted in isolation, without requiring whole files to be
decompressed. The latter option is of considerable benefit
to researchers working with SAM data, who rarely wish
to fully decompress archived data – and indeed, may not
have the time or space resources required to do so.

The next section provides a general overview of com-
pression methodologies, including a mode we refer to as
being information preserving that sits between the con-
ventional lossless and lossy approaches. Section 3 then
introduces the SAM format that is used to store multi-
alignment genomic data. Compression mechanisms suit-
able for the various SAM fields are examined in Section 4,
including measurement of their effectiveness on several
typical files. The issue of querying SAM files is then ex-
amined in Section 5. Section 6 presents related work, and
then Section 7 concludes our presentations.

2 Compression technologies

This section summarizes several issues relevant to the de-
sign of compression techniques. For detailed coverage of
these topics, see, for example, Bell et al. (1990), Moffat
and Turpin (2002) and Navarro and Mäkinen (2007).

Lossless and lossy compression

Compression techniques can be categorized as belonging
to one of two distinct classes: lossless, or exact compres-
sion; and lossy compression. Lossy compression methods
are typically applied to data originally sampled from con-
tinuous domains, and are based on the recognition that the
process of turning that data into digital form can, within
limits, be further approximated to save space. For exam-
ple, digital cameras take images that can be stored in either
.jpg form (lossy compression) or as .raw files (larger un-
compressed files). But even the .raw file is a quantized
approximation of the original scene, and its attractiveness
to photography purists is not that it contains no loss of
fidelity, but only that it contains no additional loss of fi-
delity. In most applications and environments a viewer
will not perceive any difference between the two formats.

On the other hand, data which is fundamentally dis-
crete and non-continuous, such as ASCII text, is almost
always represented using lossless methods (although it is
also worth noting that from time to time the observation
has been made that human readers can still make sense of
some lossy representations of text).

Information-preserving approaches

There is a second way in which lossy compression con-
cepts might be useful for some data sources, which we

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

51

Figure 1: Three alternative compression modalities.

introduce by way of an example. Suppose a list of n num-
bers each in the range 0 . . . (m− 1) is generated by some
process, in no particular order. These numbers might be
stored in ASCII in a file of at most n(dlog10m)e+1) bytes
(allowing +1 for a newline character after each value),
or, if a minimal binary representation is used, in a file of
ndlog2me bits. If the purpose to which the data will be
put is unknown, and no further indication is provided in
regard to the distribution of the numbers within the spec-
ified range, then the binary form is an efficient one. But
suppose the downstream application that uses the set of
numbers places no importance on the order in which the
numbers are received. If so, then the set of numbers can be
sorted, differences between those numbers taken, and the
differences coded using n(2 + dlog2((n + m)/n)e) bits
(Moffat and Turpin, 2002), which might be a non-trivial
saving. That is, if we regard the order in which the data is
presented as being of no importance, then shifting the in-
put into a particular arrangement might allow better com-
pression. In such cases, the decompressed output will also
be in that order, and so the original input file cannot be
exactly regenerated, in the sense that the Unix diff and
cmp commands will certainly report a discrepancy. Nev-
ertheless, there might also be a sense in which all of the
actual information embedded in the source data has been
preserved, even if the physical representation has not. We
call such representations information preserving, and re-
gard them as being a third possible compression modality,
neither lossless nor lossy.

Figure 1 illustrates these notions. A lossless compres-
sion mechanism must exactly recreate the input file, in all
syntactic detail, as indicated by the double arrow. An in-
formation preserving regime will not be able to reproduce
the original file (denoted by a single arrow), but once it has
been decompressed a first time into its new form, it can
be recompressed and decompressed a second time with-
out further change taking place (the double arrow at the
top of the diagram). That is, a representational fixed-point
is reached after one compress/decompress cycle. A lossy
scheme cannot reproduce the input file; nor is there even
any guarantee that a second iteration of compression and
decompression will achieve the same file.

Information preserving techniques have also been pro-
posed in other application areas. For example, consider
the area of program source code compression. In a syntax-
aware compressor for a language such as C or Pascal,
white-space tokens can be normalized and other changes
made that do not alter the compilability or correctness of
the program, and only affect how it looks in an editor.

It may also possible to augment an information pre-
serving compression regime with additional information

so as to adjust its output to recreate the exact input. That
is, losslessness might be an optional enhancement, at the
cost of storing further data. In the case of program source
code compression, the auxiliary information would spec-
ify the exact whitespace token to be inserted at each loca-
tion from which it had been stripped. In the case of the
numeric example used at the beginning of this discussion,
a permutation index costing ndlog2 ne bits would be re-
quired, which is a relatively high cost. In the SAM-format
compression proposed in the next section, the items being
permuted are long lines of text, and the overhead cost of
storing the required permutation vector is small.

Modeling and coding

It is also recognized that compression should be thought
of as consisting of two complementary activities. Model-
ing is the process of inferring structure from the data that
is presented, and, for each type of symbol or type of con-
text, estimating (either explicitly or implicitly) a probabil-
ity distribution that covers the set of options that might
occur next. Those probabilities are then – again, either
explicitly or implicitly – used to drive a coding step, in
which the actual symbol that appears is represented into
the output bitstream, taking into account the probability
estimates generated by the model. One early example of
such a structure is given the blend of model and coder
sometimes referred to as Huffman coding, in which sym-
bol probabilities are estimated using a zero-order Markov
model counting their occurrence frequencies in the text in
question; and then the symbols in the sequence are coded
via a bit-aligned minimum-redundancy code.

Static, semi-static, and adaptive

A third characterization of compression techniques is
whether they make use of static, semi-static, or adaptive
probability estimations (and hence coders). In a static
regime, probability estimates are independent of any par-
ticular input file, and are constant. In the semi-static ap-
proach, the probability estimates are based on the data file
being represented, and are established in a preliminary
pass through the data and then sent as the first compo-
nent of the compressed message. In an adaptive system
the probability estimates are constructed on-the-fly, based
on the part of the message that has already been processed,
and if necessary, allowing for the possibility of previously
unencountered symbols to be added as they arise.

Static and semi-static codes tend to allow faster decod-
ing, because there is no need for the decoder to track the

CRPIT Volume 135 - Computer Science 2013

52

Field Type Description
QNAME string Query template name
FLAG int Bitwise flags (values between 1 and 1160)

that give properties of the alignment,
including if the sequence is a reverse
complement

RNAME string Reference sequence name
POS int Leftmost mapping position of the first

matching base
MAPQ int Mapping quality:

−10 log10 Pr(mapping position is wrong)
CIGAR string The CIGAR string
RNEXT string Reference sequence name of the next

segment in the template
PNEXT int Position of the next segment in the template
TLEN int Signed observed template length
SEQ string Sequence of nucleotides bases of the read

used in the alignment
QUAL string Estimated error probability of each base:

−10 log10 Pr(base is wrong) + 33
OTHER string Optional fields of the form

TAG:TYPE:VALUE

Table 1: The twelve fields recorded for each read in a
SAM file. The first eleven are required, but may be re-
placed with * for strings and 0 for numeric fields if data
is not known or is not being stored. Further details are
provided by Li et al. (2009).

Letter Value Probability
(40 20%
7 55 0.6%
F 70 0.02%
U 85 0.0006%
d 100 0.00002%

Table 2: Examples of values stored in the QUAL field.
The ASCII letters represent probabilities of error in the
corresponding base according the relationship value =
−10 log10 Pr(error) + 33. The error probabilities are com-
puted by the sequencing hardware.

probability changes. Static and semi-static methods also
make it easier to provide random-access into the com-
pressed file. In particular, if a bit pointer is provided into
the compressed package, coding can be resumed from that
location provided the context is understood.

3 Genomic data formats

Genomes are typically described by (usually long) se-
quences of identifying letters, one per base-pair of the
original. In simplest form, the letters are the four
acronyms of the fundamental bases, A, C, G, and T. Some
formats (including SAM) add other letters, such as N, for
unknown bases; and some formats further extend the al-
phabet to include specific identifying letters for other pro-
teins that might be present. The common thread in all for-
mats is the small alphabet that is employed (between four
and around twenty symbols), and the dominance of the
four key symbols.

SAM format

In the SAM format, each sequence of bases is accompa-
nied by eleven other fields that add considerably to the
total stored size (Li et al., 2009). These fields are shown
in Table 1. All of them are required, in the sense that they
cannot be omitted; but it is also common for them to be
stored as place-holder 0 and/or * values.

Figure 3: Example of CIGAR analysis. The positions
marked with * are indicative only, and not present in ei-
ther of the two sequences.

The field labeled SEQ is the sequence of bases corre-
sponding to this read; the other critical field from a data
storage point of view is QUAL, which is the same length
as the SEQ field, and also contains an ASCII letter for each
sequence position. The value stored in each QUAL field is
an estimate of the correctness of the corresponding SEQ
field. The mathematical relationship between estimated
probability of error and value stored in QUAL is shown in
Table 1; and Table 2 provides some examples. The QUAL
sequence can be thought of as a quantization of a underly-
ing phenomena that is numeric and continuous, and hence
a candidate for possible use of lossy compression. Fig-
ure 2 shows a sample read containing 25 bases in the SEQ
string, with the accompanying QUAL string indicating that
each base after the first has an error probability of well
under 0.05%.

Each of the reads may be referenced against an exter-
nal resource described by the RNAME field, which can be
thought of as a reference identifier indicating the external
location of a related resource. If an alignment has been
computed for this read relative to that resource, then the
POS field indicates the offset within the resource at which
the alignment commences.

Overall, a SAM file consists of a header block describ-
ing attributes of the sample as a whole, such as meta-data
describing the experimental environment and regime; fol-
lowed by thousands or millions of relatively short reads –
each perhaps 30 to 120 bases long – derived from a single
experimental run. Hence, it is not unusual for the same
RNAME to turn up many times in the SAM file, and nor is
it in any way unusual for the reads to overlap, in the sense
of the identified alignment for one of them being within
the range of the identified alignment of another.

In some cases, the read represented by the SEQ string
has not only been aligned against the RNAME string, it
is also represented relative to it as a sequence of edit in-
structions. If so, the corresponding CIGAR field (Compact
Idiosyncratic Gapped Alignment Report) is non-empty. If
it is present, the CIGAR string consists of a sequence of
instructions: M atch the next ` characters; D elete the next `
characters; or I nsert a group of ` character. Figure 3 gives
an example showing two similar reads, and a CIGAR string
that describes their (relative to each other) structure.

Fields that are absent are represented by * and/or 0
characters. The file itself is tab-delimited between fields,
and newline delimited between read alignments.

BAM format

The SAMtools software suite1 provides other storage op-
tions. A second standard representation is known as BAM
format, in which blocks of text from a SAM file are stored
compressed using a modified zlib library. Compared to
the original SAM file, a BAM compressed version can be
expected to occupy around 30% of the original size, with
an auxiliary index that allows limited random access to the
reads in order to support queries. The BAM representation
uses the BGZF (Blocked GNU Zip Format) compression

1See http://samtools.sourceforge.net/.

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

53

Figure 2: Example of the SEQ and QUAL components for one read within a SAM file.

HG00113 HG00559 Local
Alignments 5,630,211 2,515,117 8,095,516
Av. read (bases) 90 108 100
Size (MB) 2,220.5 1,121.6 1,965.7
BAM (MB) 457.8 285.1 762.9
Gzip (MB) 429.2 260.7 748.2

Table 3: Statistics for three SAM files. File HG00113
refers to HG00113.chrom11.ILLUMINA.bwa.GBR.
exome.20111114; File HG00559 is HG00559.chrom20.
ILLUMINA.bwa.CHS.lowcoverage.20111114; and file
Local was supplied by a local researcher based on their
own bioinformatics work.

Field Raw Gzip
MB % MB %

QUAL 488.6 22.0% 239.6 66.5%
SEQ 488.6 22.0% 38.2 10.6%
OTHER 933.5 42.0% 27.0 7.5%
QNAME 100.9 4.5% 20.1 5.6%
PNEXT 49.0 2.2% 12.2 3.4%
TLEN 24.0 1.1% 8.7 2.4%
POS 49.0 2.2% 8.2 2.3%
Total 2220.5 100.0% 360.4 100.0%

Table 4: Percentage required by various SAM fields of
HG00113, before and after compression using gzip in a
striped manner, ordered by decreasing compressed contri-
bution to the total, and with six smaller fields omitted. The
striped and compressed representation totals 360.4 MB.

format, which adds an access structure on top of the stan-
dard gzip file format.

As is shown in Table 3, BAM conversion results in a
stored file that is a little larger than can be attained by
gzip alone. The difference is largely caused by the addi-
tional BAM index, which links positions in the reference
sequence with reads in the blocks of the BAM file.

4 Compressing SAM components

To evaluate alternative compression methodologies, three
SAM files are used. Some attributes of the three sam-
ple files are summarized in Table 3. In the remainder of
the text they are referred to by their abbreviated names
HG00113, HG00559, and Local.

Striping

One well-known mechanism for compressing data stored
in structured formats like SAM is to stripe the data into
separate streams, and then use a general-purpose compres-
sor – such as gzip – on the concatenated contents of each
stream. Decompression regenerates the various streams,
and they can be re-interleaved to recreate the original file.
Striping is effective if the fields are distinctive in nature,
and/or contain vertical repetitions. Table 4 shows the raw
cost of some of the striped components of the test file
HG00113, as a percentage of the file size, before and af-
ter the components are compressed by gzip.

Notable in the table is that the QUAL and SEQ fields are
equal in size prior to application of a standard compres-
sion regime, but that the SEQ field is far more compress-
ible than the QUAL field, and that the latter dominates the
compressed representation. The high relative compress-
ibility of the SEQ field is a consequence of the fact that it is
over a very small alphabet; and that overlapping reads are
likely to contain common subsequences that can be iden-
tified by the string match-based gzip compression mech-
anism. The OTHER field is also highly compressible, and
moves from being the dominant cost in the uncompressed
version of the file, to being less than 8% of the striped
compressed file. Note that the percentages in Table 4 are
relative to the sizes of the two original files. Overall com-
pression rates for particular components can be estimated
from the figures supplied. For example, on file HG0013
the SEQ field drops from being 22.0% of 2,200 MB to be-
ing 10.6% of 360.4 MB, an overall saving of more than
445 MB, and a reduction to around just 8% of the original
SEQ requirement.

On the other hand, the QUAL field has both a larger al-
phabet and less repetition, because the estimated error is a
function of many factors, and is only loosely correlated
with its position in the underlying genome. It requires
fully two-thirds of the striped compressed representation.

The SEQ field

We now focus on the SEQ field, and consider if there are
additional storage savings possible.

One of the reasons that gzip obtains such good com-
pression on SEQ components is the large number of re-
peated subsequences, which arise because of the process
used to generate SAM files. The biological source ma-
terial contains many copies of the underlying genetic se-
quences. When cut randomly into segments, each particu-
lar nucleotide in the original appears in any number of the
reads that are reproduced into the SAM file. Within the
SAM file each of these reads might partially or fully over-
lap with other reads in the file, or might be unique. More-
over, when reads do overlap, they are likely to be highly
similar. If the process used to generate them were infalli-
ble, and if there were no mutations in any of the cells in the
source material, the reads at any sequence location should
be in perfect agreement. But there are discrepancies in-
troduced by the inexactness of the process and machinery
used; by the possibility that some of the reads arise from
mutated cells; and by computation errors made when the
alignments are identified.

Even so, there can be a high degree of repetition across
the multiple reads that span any particular location in the
genome, and even though it is a general-purpose text com-
pression program rather than one tailored to DNA se-
quences, gzip does a good job of identifying and exploit-
ing the common subsequences.

An obvious question is whether a tailored compression
regime might do better. In particular, there is additional
information associated with each read that could be used
to explicitly identify the set of reads that are believed to
have overlapping SEQ fields. It is not mandatory for SAM
records to include a meaningful RNAME – like many of the
fields listed in Table 1, it can be stored as a * to indicate
“not present”. But when it is present, it indicates which

CRPIT Volume 135 - Computer Science 2013

54

HG00113 HG00559 Local
Different RNAMEs 1 1 68
Overlapping reads (%) 97.1 99.9 80.8
Overlapping bases (%) 94.4 98.6 75.2
Median multiplicity 102 6 16

Table 5: Statistics for the three SAM files in terms of
overlaps relative to the given reference sequences. The
final row shows the median, taken over the set of all bases
present in the file, of the number of bases that share the
same offset in regard to the same RNAME sequence, count-
ing one for bases that appear in read alignments with no
RNAME specified.

reference sequence the SEQ field is like, and the numeric
POS field indicates an offset relative to that reference se-
quence. When these two fields are available it is thus pos-
sible for an encoder to permute the records in the SAM so
that all of the alignments that relate to a given reference
sequence are placed in a cluster of consecutive records,
and also for them to be ordered by POS within that cluster.

If the encoder permutes the records within the SAM
file, there are then two options for decompression. The
first is for a permutation vector to be added to the com-
pressed representation, so that the decoder is able to in-
vert the permutation and restore the original ordering. As
noted in Section 2, if there are n records, then a total
of ndlog2 ne bit suffices for this purpose. If the down-
stream applications do not require that the original SAM
file ordering be retained – indeed, if there is no impor-
tance of any sort associated with the original ordering of
the records, and their arrangement was an arbitrary arti-
fact of the process that generated them – then there is no
need to store the permutation vector, and the compression
regime can be information preserving rather than lossless.

Table 5 shows the extent of the read overlaps in the
three example files. Only the file Local has less than
around 95% or more overlaps in terms of both reads and
individual bases. It is lower is because no RNAME field is
supplied for 18% of the reads, and hence it is not possible
to identify overlaps for those SEQ components.

If it could be assumed that the set of reference se-
quences used in each SAM file was available to the com-
pressor and decompresser as a static external resource,
then each of the reads in the SAM file could be com-
pressed relative to it. But this would be a risky assump-
tion, and would mean that the compressed SAM file could
not be regarded as being self-contained.

Presumed Reference Sequence

Instead, we construct what we call a presumed reference
sequence, or PRS, that is specific to the SAM file in
question, and does not require linkage to any external re-
sources. Figure 4 shows how this is done, using as an
example four reads with slightly different POS fields and
the same RNAME field. First, the set of reads in the SAM
file are ordered by the RNAME field, and then by the POS
field specified for each one. Where there is overlap, the
reads are aggregated by a simple majority vote to form a
presumed reference sequence.

In Figure 4(a) it is supposed that four reads each of
20+ bases are slightly offset from each other, and are the
only four reads that span a section of the REF sequence.
The presumed reference sequence is shown at the top, and
is in complete agreement with the four reads in all but
11 (out of a total of 97) of the base positions, as shown
in Figure 4(b). (For reasons that are explained shortly,
the N in read four is not permitted to install an N into the
PRS.) To encode these four reads, the PRS string span-

ning 38 bases is stored, then four sets of “offset, length,
exceptions” information, one per read, detailing: the com-
mencement within the PRS of that read (which can be
inferred from the POS field); its length (which is usually
constant throughout the whole SAM file); and a list of lo-
cations in the read where bases other than is stored in the
PRS are to be inserted.

Representing exceptions

Figure 5 gives more details of the process used to encode
the reads via copies from the PRS and a list of exceptions.

If the compressed SAM file is to be self-contained, the
first component to be stored must be the PRS. It is a string
of bases, typically over an alphabet of size σ = 4, cov-
ering symbols A, C, G, and T with their usual meanings,
and requiring two bits per base to economically encode
them. Note that N, the symbol used to indicate “unknown”
symbols, is not permitted in the PRS. If it is the majority
symbol – as is the case with the N in Read 4, it is replaced
in the PRS by any other symbol.

Each of the reads relative to the PRS is stored as an
offset relative to the previous read’s POS; plus a length;
plus a set of instructions from which the read can be re-
constructed. To achieve the third component, each read is
decomposed into alternating “copy” and “replace” counts,
illustrated in the lower part of Figure 5. Because the ex-
ceptions are only required when a base differs from the
one stored in the corresponding position in the PRS, it is
beneficial to further split the stream of exceptions into four
parts, denoted in the figure as “not A”, “not C”, and so on.
For example, in Figure 5 the exception in Read 3 consists
of the two bases AA. The PRS contains TG at the corre-
sponding positions, so the first A is stored in the “not T”
subsequence, and the second in the “not G” subsequence.

These nine elemental components are striped across
nine arrays that collectively allow the set of reads to be re-
constructed, provided that the PRS is also available. Each
of the arrays can be thought of as being a set of integers
with a specialized purpose and localized distribution pat-
tern. For example, the values in the “Replace” array will
typically be much smaller than the values in the “Copy”
array, and should be stored using a different encoding.

The decision to avoid N values in the PRS is a con-
sequence of their low frequency in the SEQ sequence. If
N symbols were allowed in the PRS, the alphabet used to
represent it has σ = 5 symbols. On the other hand, if the
PRS is restricted to the standard σ = 4 bases, each can be
represented directly using two bits. Moreover, because the
PRS is an internally-stored aid to compression rather than
an expected output of the process, it can, if it simplifies
processing or saves space, be approximated. Hence, ex-
plicitly preventing N values does not damage the correct-
ness of the arrangement, since whatever is in that position
in the overlapping reads can be coded as an exception to
the base that is arbitrarily used to replace the N.

In addition, because N is such a rare symbol, it is also
helpful to code it differently when it appears in the four
“not” sequences. Where an N appears in any of the over-
lapping reads, it is replaced temporarily by whatever sym-
bol appears in that position in the PRS, and represented as
a simple copy (or as part of a longer copy). To undo this
deliberate simplification, an overall list of locations in the
reads that are N is also maintained. This list is consulted as
the final step in the decoding process, and any occurrences
of N within the designated range of positions are reinstated
into the output SEQ sequence before it is written. This ap-
proach implies a slight redundancy. But N symbols are
relatively rare, and the cost of doing it this way is far less
than the overhead cost of working with σ = 5 when cod-
ing the PRS, and of working with σ = 4 when coding the
four “not” sequences.

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

55

(a) Constructing the presumed reference sequence by majority vote.

(b) Identifying exceptions to the presumed reference sequence.

Figure 4: Construction of a presumed reference sequence by taking the majority opinion of the overlapping reads at each
position: (a) a set of overlapping reads, with N symbols considered to be non-voting; and (b) the locations in those reads
at which discrepancies occur, again ignoring any Ns.

1 2 4 8 16 32 64 128 256 512

Repetitions

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
b
a
s
e
s
 (

c
u
m

u
la

ti
v
e
)

HG00113

HG00559

Local

50%

Figure 6: Cumulative plot of the fraction of bases in the
SAM file as a function of the number of overlapping reads
each base belongs to.

Figure 6 shows the extent to which bases overlap. To
generate the three curves, the total set of bases in each file
was ordered according to the number of other bases that
were coincident with this one. For example, less than a
quarter of the total number of bases in each of the three
SAM files appeared as the only one aligned with that par-
ticular position in the RNAME sequence. More impor-
tantly, 50% of the bases share their position with 5 or more
other bases in HG00559, with 15 or more other bases in
Local, and with more than 100 other bases in HG00113.
The number of overlaps arising from the multiplicity of
reads is substantial.

Table 6 brings the various components together. Each
of the data types comprising the compressed SEQ stream

is shown, together with the number of instances of that
type of object. The cost of storing each component using
a suitable static code is also shown. For example, to code
the “not” sequences, each of which consists of symbols
over an alphabet of size σ = 3, the three binary code-
words 0, 10, and 11 are used, with an average cost of not
more than 1.67 bits per symbol, provided only the most
frequent of the three alternatives is assigned the one-bit
codeword. Similarly, a range of binary codes and Elias
γ codes (see Moffat and Turpin (2002) for details) are
used for the other components. The critical change that
has been achieved compared to the gzip approach is that
none of the values in Table 6 are based on adaptive (or
even semi-static) models or codes.

As was already noted in connection with Table 5, the
third of the data files, Local, contain a significant fraction
of reads that are not associated with an identified refer-
ence sequence. These read alignments are coded as if they
were non-overlapping, that is, as bases over an alphabet of
size σ = 4 symbols, with the N symbols reinstated subse-
quently, and no use made of a PRS. Those costs are shown
in the bottom part of the table.

Summed over the various components, Table 6 shows
that the deconstructed SEQ stream can be represented in
space that is always at least a little less than is required by
gzip equivalent (note that the representations in Table 6
also absorb the separate POS field, stored as the offset),
and on file Local is about half of that space. More im-
portantly, the proposed approach is structured in a manner
that has considerably more flexibility than gzip in terms
of access options, because it is based entirely around static
models and codes. Access operations on SAM-format
data are discussed shortly, in Section 5.

The QUAL field

Genomic data is discrete rather than sampled-continuous,
and hence, at face value, not amenable to lossy compres-

CRPIT Volume 135 - Computer Science 2013

56

Figure 5: Representing a group of SEQ fields as independent components relative to a presumed reference sequence.

Component Code HG00113 HG00559 Local
Number Size (MB) Number Size (MB) Number Size (MB)

Reads with an RNAME field supplied
PRS binary(4) 52,641,432 12.55 58,432,811 13.93 106,253,672 25.33
Length array constant 5,630,221 0.00 2,515,117 0.00 8,095,516 0.00
Offsets Golomb 5,630,221 2.01 2,515,117 1.80 6,651,885 3.17
Copies Elias γ 18,926,297 11.54 14,678,161 6.87 24,642,246 16.88
Replacements Elias γ 14,358,719 5.09 12,882,985 4.25 19,814,961 5.66
not A binary(3) 10,649,437 2.12 9,472,568 1.88 11,341,438 2.25
not C binary(3) 11,813,272 2.35 8,686,985 1.73 12,796,833 2.54
not G binary(3) 11,266,210 2.24 8,697,083 1.73 12,407,771 2.47
not T binary(3) 10,850,150 2.16 9,432,063 1.87 11,332,794 2.25
is N binary(230) 6,446 0.01 226,187 0.26 98,348 0.31
Reads without an RNAME field supplied
Bases binary(4) 0 0.00 0 0.00 144,363,100 34.42
is N binary(230) 0 0.00 0 0.00 788,351 0.93
Total 40.06 34.32 96.22

Table 6: Costs for SEQ components when stored as shown in Figure 5. Direct application of gzip to the original SEQ and
POS fields in a striped approach results in corresponding costs of 46.43 MB, 39.91 MB, and 232.54 MB respectively.

sion. But some components of the SAM-format data have
elements of sampling associated with them, most notably
the QUAL field (described in Section 3). Moreover, as is
illustrated in Table 4, the SEQ components and the dom-
inant space requirement when SAM data is compressed.
As a tangible reminder of this, combining the data pre-
sented in Tables 3 and 6 implies that, summed over all of
the SEQ values in HG00113, each base can be stored in an
average of 0.58 bits. But the corresponding gzip’ed rep-
resentation of QUAL elements requires an average of 3.97
bits each. This imbalance makes the QUAL fields costly
indeed to store.

There are two key characteristics that contribute to
QUAL sequences being harder to compress than SEQ com-
ponents. First, they are over a larger alphabet. The ASCII-
33 mapping that is used to convert probabilities into letters
typically spans between ten and twenty values in a typical
SAM file. And second, it is not possible to exploit the
RNAME-based overlaps when compressing QUAL fields in
the way that was possible with the SEQ fields, because dif-

ferent reads that cover the same base position are uncor-
related – the QUAL value is influenced by a wide range of
factors other than the actual offset at which it occurs.

However, the QUAL values represent quantized values
over a numeric domain, and so in some situations it may
be appropriate to quantize them more coarsely than via
the ASCII-33 representation described in Table 1. If a
tolerance p is stipulated, and limited flexibility of values
introduced, with the proviso that no QUAL score may be
varied by more than p units form its original quantized
value, then a spectrum of lossy representations can be in-
troduced. When p = 0, the representation is lossless.

To exploit this possibility, we represent the QUAL se-
quence as a list of tuples, consisting of a value followed
by a repeat count. This run-length encoded approach will
then naturally exploit repeated values, if they can be cre-
ated via the flexibility introduced by the lossy representa-
tion. To encode a QUAL sequence for a given parameter
p, consecutive values from the QUAL are added to a grow-
ing run while the difference between the maximum and

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

57

Figure 7: Lossy representation of QUAL fields. In this example p = 1, and each original value is represented by a
mapped value that differs by at most one from the original.

Component Code HG00113 HG00559 Local
Size (MB) Size (MB) Size (MB)

Fidelity parameter p = 0 (lossless)
Run-length sequence Elias γ 61.48 32.83 92.16
Byte sequence ASCII 414.88 204.98 506.48
Byte sequence binary (global) 311.16 153.74 379.86
Byte sequence binary (local) 263.83 143.61 347.26
Fidelity parameter p = 1

Run-lengths Elias γ 66.89 32.98 80.60
Byte sequence ASCII 300.98 131.70 311.51
Byte sequence binary (global) 225.73 98.77 233.63
Byte sequence binary (local) 195.10 94.86 214.30
Fidelity parameter p = 2

Run-lengths Elias γ 65.01 29.11 71.99
Byte sequence ASCII 230.62 90.09 229.33
Byte sequence binary (global) 172.96 67.57 172.00
Byte sequence binary (local) 151.71 66.74 160.43
Fidelity parameter p = 3

Run-lengths Elias γ 60.34 24.88 64.28
Byte sequence ASCII 177.62 64.53 176.24
Byte sequence binary (global) 133.21 48.40 132.18
Byte sequence binary (local) 118.93 49.23 126.26

Table 7: Lossy compression of QUAL fields. Each QUAL value is replaced by one that is at most p different from its true
value. Direct application of gzip to the same SEQ data results in corresponding files of size 239.60 MB, 141.68 MB,
and 349.83 MB respectively.

minimum of the values in the run is less than 2p. Once
a trigger item is encountered that would cause the differ-
ence to be greater than 2p, a tuple is emitted comprising
the current run length, and the mid-value that represents
it. The trigger item is then the first value in the next run.
Figure 7 gives and example of this process, with p = 1. In
this example the 25 QUAL values are reduced to a total of
7 tuples, including one that includes 9 QUAL values in the
range 72 to 74, all represented by the mid-value 73. With
p = 2, the same sequence would be further reduced to just
three runs, with mid-values of 60, 71, and 72 respectively.

To store the runs, we again seek to make use of static
codes. Table 7 shows how this might be done, for a loss-
less representation with p = 0, and for three different
lossy options with p > 0. In this set of measurements, the
length of each run is assumed to be stored using the Elias
γ code (see Moffat and Turpin (2002)); and three differ-
ent approaches to representing each of the corresponding
QUAL values are examined:
• as a plain ASCII bytes, as is used in the uncom-

pressed SAM file;

• as a binary value using whole-of-file global parame-
ters, using the number of bits indicated by the range
of QUAL values stored in the SAM file; and

• as a binary value using per-alignment read parame-
ters, with two additional bytes stored per alignment
to indicate the upper and lower bounds of the local
binary code.

HG00113 HG00559 Local
p = 0 1.16 1.26 1.52
p = 1 1.61 1.97 2.48
p = 2 2.10 2.88 3.37
p = 3 2.72 4.01 4.38

Table 8: Average number of bases per run of QUAL val-
ues for three files and four different values of the fidelity
parameter p.

The latter is superior in all cases, even allowing for the
overhead caused by the two extra bytes. When p = 0 the
combined cost of the runlengths and QUAL values is (un-
surprisingly) greater than the cost of applying gzip to the
same data. But as p is increased, and lossy compression is
introduced, the cost decreases.

Table 8 lists the average length of the runs that are
formed. As anticipated, increasing p results in increased
run lengths, and hence better compression. On the other
hand, lossy representations are always a risk, since fu-
ture uses of data might require a fidelity of representation
that seems unnecessary now. One option would thus be to
store the QUAL values in lossy form using a relatively large
value of p, plus store a difference list (also compressed) as
a separate resource that would then allow exact reproduc-
tion of the original QUAL sequence, should it be required.

CRPIT Volume 135 - Computer Science 2013

58

5 Querying SAM files

The key data extraction operation applied to SAM files is
to isolate and present a window of the reads that it con-
tains, identified by an RNAME and a set of offset positions
within it. For example, if a particular trait is known to be
encoded in some section of the chromosome, a researcher
may interrogate the SAM-format data that has been gener-
ated for an individual, to see where and by how much that
individual differs from the reference in regard to the iden-
tified range of bases. Because of the small but persistent
possibility of error, all of the read alignments associated
with that window of bases are extracted from the SAM
file and displayed to the researcher.

Supporting localized extraction options via complete
decoding and linear scan is expensive, even for uncom-
pressed data. Tools for working with BAM format data
are similarly costly, and involved decompression of non-
trivial blocks of data, followed by sequential scanning
over the read alignments, looking for overlaps.

The storage structure described in Section 4 empha-
sized simple static codes for two purposes:
• first and foremost, to avoid all obstacles to random-

access decoding, so that given a set of pointers into
the various streams of data, decoding can be com-
menced immediately from that index location; and

• second, to allow for faster decoding than is typi-
cally possible if adaptive models, or inverse Burrows-
Wheeler transformations, or similar, need to be con-
sulted for each character generated.

The information preserving reordering of the SAM
file lines assists with these goals, grouping them first by
RNAME, and then by offset relative to the start of it. To
extract any/all reads that relate to a specified set of bases,
the set of reads that is required is identified by seeking
within the compressed representation, looking for the first
read alignment whose last base overlaps with the search
interval, and for the first read alignment thereafter whose
first base is to the right of the search interval.

To allow such seek operations to take place, the set of
read alignments will be sampled at regular intervals, and
an index built that maps offset values into bit pointers into
the compressed data stream (and into each of the distinct
streams of bits that must be combined in order to decode).
The sampling interval will control the tradeoff between
speed of access and space required, with frequent samples
allowing fast access, but requiring increased space.

6 Related Work

There has been a range of previous work that examines
the problem of efficiently representing DNA data (the SEQ
string that is a component of SAM-format files), includ-
ing early discussions such as that provided by Grumbach
and Tahi (1993), who identify the need to locate exact
matches, palindromic matches, and complement matches
at separations much greater than is the usual case in typical
text compression applications. Ten years later, Manzini
and Rastero (2004) describe an enhanced scheme that uses
a finger-printing techniques to identify three kinds of long
repetitions (exact, reverse-complement, and approximate,
and possibly far apart) in DNA sequences, and uses a
range of methods to code descriptions of the repetitions
so identified. Their method is both fast and effective com-
pared to other SEQ-specific approaches, but relies on an
adaptive model (namely, the part of the sequence already
encoded, which is used as a dictionary of long phrases),
and hence is not suited to random-access decoding.

Cao et al. (2007) describe a compression approach
based on multiple “experts”, each of which forms a prob-
ability estimation for each symbol in the genome. The

opinions of the experts are then weighted and combined,
and an arithmetic coder used to convert the final overall
probability distribution into an output bitstream. While
this type of approach is interesting from an “exactly how
much compression can be attained” point of view, it is at
odds with our intention to make use of simple state-less
codes that allow indexed random-access decompression.

Kuruppu et al. (2012) describe a DNA compression
regime they call COMRAD, which builds an explicit dictio-
nary of 16-base sequences, and then uses it iteratively to
form longer recurring phrases, assigning a new identifier
to each such extended phrase. It is an example of DNA-
tailored grammar-based compression; and when applied
to large sets of related genomes, is able to infer and ex-
ploit very long cross-genome repetitions. That is, the more
closely related the set of sequences that is being processed,
the better the more effective the compression. Kuruppu et
al. also explored the scalability of their approach, by simu-
lating the generation of extended sets of related genomes,
and testing the performance of COMRAD against them.

Deorowicz and Grabowski (2011) consider genomic
data stored in FASTQ-format, which, like SAM-format,
maintains a QUAL string for each SEQ string, and creates
files that can contain millions of short read alignments.
They use an adaptive dictionary-based approach, and con-
sider repetitions of 36 bases or more; one of the determin-
ing factors as to whether any given phrase is retained in
the dictionary is the associated quality scores, working on
the principle that low-quality phrases are less likely to re-
cur than high-quality ones. As is proposed in Section 4,
Deorowicz and Grabowski also make use of runlength in-
formation when storing the QUAL fields. They give results
that show that their system DSRC achieves excellent com-
pression with typical FASTQ files in the GB range being
reduced to 20% or less of their original size.

Matos et al. (2012) also consider the question of multi-
sequence alignment compression. They describe an ap-
proach similar to that summarized in Section 4, and derive
a sequence that they call the “estimated ancestor”. At the
core of their mechanism is a two-dimensional context pre-
dictor (similar to the type of predictor used for bi-level im-
age compression) that when coupled with blended proba-
bility estimates and an arithmetic coder is able to represent
a set of related SEQ components in under one bit per base.

Yanovsky (2011) presents a compression implementa-
tion for multi-alignment SEQ values called ReCoil, which
is designed to handle large files of genomic data stored on
disk (rather than in main memory) and where repetitions
might be widely separated. In this approach, reads that
share common subsequences of 15 or more bases are iden-
tified, and a common substitution made at all locations,
thereby saving space. The main contribution of the paper
is showing how the required steps can be mapped onto se-
quential scanning and sorting processes that are efficient
when the data is held on secondary storage.

Cox et al. (2012) apply the well-known Burrows-
Wheeler transform to multi-alignment short read ge-
nomic data. But unlike the general-purpose BWT-based
compression program bzip2, which uses blocks of just
900 kB, here very large numbers of reads can be accom-
modated through the suffix-sorting process that generates
the BWT. The transformed string is then coded using a
context-based estimator, and arithmetic coding. Excel-
lent compression outcomes are achieved, because all of
the like subsequences are brought together by the large-
scale BWT process, and hence the probability estimates
that are generated are relatively highly skewed, and the
emitted arithmetic tend to be very short. It is not clear
whether the same techniques can be applied to the QUAL
fields that dominate SAM-format files.

One potential problem with multi-alignment compres-
sion is the need for the RNAME and POS fields to be sup-
plied. While the methods presented in Section 4 include a

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

59

PRS in the compressed package, rather than simply refer-
ring to an external reference sequence, they nevertheless
require the reads to have been aligned at the time they were
generated. When read alignments have not been provided
with RNAME and POS fields, we have coded them as unref-
erenced components, and used less effective techniques,
as shown in the bottom rows of Table 6. To address this
problem, Jones et al. (2012) include a de novo assembly
component in their Quip software, that seeks out possible
overlaps of reads seeded using overlapping 12-grams, and
uses a probabilistic Bloom filter to reduce the amount of
memory space required while this is taking place. The rest
of Quipmakes use of an order-12 (on bases) context-based
predictor, and arithmetic coding to convert those predic-
tions into a bitstream.

In work that is closely related to the proposal pre-
sented here, Daily et al. (2010) focus on simple static
codes such as Golomb codes, Rice codes, and Elias codes,
and have created a tool called GenCompress that han-
dles multi-alignment files with reference to an externally-
stored RNAME sequence. While we do not wish to make
use of explicit external reference sequences, there are
techniques in their work that may also be applicable when
we construct our own implementation.

In a similar vein, Wan et al. (2012) extend generic SEQ
compression to consider how best to handle collections of
related reads. They carry out a detailed study of the QUAL
field that is part of SAM- and FASTQ-format files, and
consider mapping transformations – including lossy ones
– that improve the compressibility of this data. A range
of codes are considered for representing the mapped val-
ues, including binary and other static representations. Wan
et al. conclude that general purpose compressors such as
gzip and bzip2 are less effective for QUAL values than
are simple codes, and that compression effectiveness can
be traded off against representational fidelity; in this re-
gard, the preliminary results presented above can be re-
garded as a partial verification of their observations.

A wide range of other techniques have been proposed:
Tembe et al. (2010) represent all possible distinct pairs
of base and quality value using Huffman codes; Christley
et al. (2009) store only the variations between sequences,
coding relative to a reference sequence; and Kozanitis
et al. (2010) divide reads into fragments of a chosen size,
and note that neighboring quality values are correlated and
can be handled using a Markov model.

7 Summary

We have described structures and techniques suitable for
representing SAM-format files containing genomic data.
The next significant step in this project is to implement
the proposed combination of mechanism as an integrated
compression tool, and verify that it is as effective as is
indicated by the results obtained during this feasibility
study. We will also implement the required random ac-
cess operations, and measure their efficiency; beyond that
we plan to seek ways of supporting that capability using
modern succinct data structures so that the cost of the ad-
ditional index information is minimized (or indeed, free).
Our overall objective is to provide fast random interval-
based access and compact storage requirements in a single
package. The work presented here lays the foundations for
such a development, and gives clear guidance as to the fu-
ture path of this project.

References

Ansorge, W. (2009), ‘Next-generation DNA sequencing
techniques’, New Biotechnology 25(4), 195–203.

Bell, T. C., Cleary, J. G. and Witten, I. H. (1990), Text
Compression, Prentice Hall, Englewood Cliffs, NJ.

Cao, M. D., Dix, T. I., Allison, L. and Mears, C. (2007),
A simple statistical algorithm for biological sequence
compression, in ‘Proc. IEEE Data Compression Con-
ference’, pp. 43–52.

Christley, S., Lu, Y., Li, C. and Xie, X. (2009), ‘Hu-
man genomes as email attachments’, Bioinformatics
25(2), 274–275.

Cox, A. J., Bauer, M. J., Jakobi, T. and Rosone, G.
(2012), ‘Large-scale compression of genomic sequence
databases with the Burrows-Wheeler transform’, Bioin-
formatics 28(11), 1415–1419.

Daily, K., Rigor, P., Christley, S., Xie, X. and Baldi, P.
(2010), ‘Data structures and compression algorithms
for high-throughput sequencing technologies’, BMC
Bioinformatics 11, 514.

Deorowicz, S. and Grabowski, S. (2011), ‘Compression of
DNA sequence reads in FASTQ format’, Bioinformat-
ics 27(6), 860–862.

Grumbach, S. and Tahi, F. (1993), Compression of DNA
sequences, in ‘Proc. IEEE Data Compression Confer-
ence’, pp. 340–350.

Jones, D. C., Ruzzo, W. L., Peng, X. and Katze, M. G.
(2012), ‘Compression of next-generation sequencing
reads aided by highly efficient de novo assembly’, Nu-
cleic Acid Research pp. 1–9.

Kozanitis, C., Saunders, C., Kruglyak, S., Bafna, V. and
Varghese, G. (2010), Compressing genomic sequence
fragments using SLIMGENE, in ‘Proc. 14th Ann. Int.
Conf. Research in Computational Molecular Biology’,
RECOMB’10, pp. 310–324.

Kuruppu, S., Beresford-Smith, B., Conway, T. C. and
Zobel, J. (2012), ‘Iterative dictionary construction for
compression of large DNA data sets’, IEEE/ACM
Trans. Comput. Biology Bioinform. 9(1), 137–149.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan,
J., Homer, N., Marth, G., Abecasis, G. and Durbin,
R. (2009), ‘The sequence alignment/map format and
SAMtools’, Bioinformatics 25(16), 2078–9.

Manzini, G. and Rastero, M. (2004), ‘A simple and fast
DNA compressor’, Softw., Pract. Exper. 34(14), 1397–
1411.

Matos, L., Pratas, D. and Pinho, A. (2012), Compression
of whole genome alignments using a mixture of finite-
context models, in ‘Image Analysis and Recognition -
9th International Conference (ICIAR)’, pp. 359–366.

Moffat, A. and Turpin, A. (2002), Compression and Cod-
ing Algorithms, Kluwer Academic, Boston, MA.

Navarro, G. and Mäkinen, V. (2007), ‘Compressed full-
text indexes’, ACM Comput. Surv. 39(1).

Tembe, W., Lowey, J. and Suh, E. (2010), ‘G-SQZ: com-
pact encoding of genomic sequence and quality data’,
Bioinformatics 26(17), 2192–2194.

Wan, R., Anh, V. N. and Asai, K. (2012), ‘Transfor-
mations for the compression of FASTQ quality scores
of next-generation sequencing data’, Bioinformatics
28(5), 628–635.

Yanovsky, V. (2011), ‘ReCoil: An algorithm for compres-
sion of extremely large datasets of DNA data’, Algo-
rithms for Molecular Biology 6(23).

CRPIT Volume 135 - Computer Science 2013

60

