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Abstract 

Here we investigate an extension of a previously 
suggested "automatic amide I frequency selection 
procedure" where we introduce an additional criterion 
utilizing empirical knowledge on regions within the 
amide I band (1600-1700 cm-1) found to be particularly 
sensitive to protein secondary structure. We show that the 
genetic algorithm provides a solution with good protein 
secondary structure prediction accuracy. 

Based on an evaluation set of 13 protein infrared spectra 
from proteins not contained in the reference set, it is 
demonstrated that our method is capable of making good 
predictions for proteins it has never seen before during 
training. In the present study, where the genetic algorithm 
is guided towards a solution with a higher number of 
empirically determined, structure sensitive amide I 
frequencies selected, minor improvement in prediction 
accuracy for α-helix and β-sheet structure could be 
achieved compared to our previous study, where no such 
knowledge has been provided. Despite the very limited 
number of protein spectra in the reference set (18), the 
neural networks were able to generalize with an overall 
average of standard errors of prediction of 4.36 % based 
on the evaluation set of protein spectra, which is even 
better than that achieved during the analysis based on the 
reference set of protein spectra (4.8 %). This clearly 
indicates the potential of our approach once more protein 
infrared spectra are available to base the analysis on. 

Keywords: Protein secondary structure prediction; FTIR 
spectroscopy; Neural networks; Genetic algorithms; 
Empirical knowledge 

1 Introduction 
Several different techniques are available for 
quantification of protein secondary structure from FTIR 
spectra of proteins (Haris, 2000). Recently, we have 
introduced an alternative method based on the 
combination of a genetic algorithm and neural networks 
(Hering et al.  2002). The main aim of this study was to 
let the genetic algorithm search for an optimal 
composition of amide I frequencies producing good 

predictions across protein secondary structures under 
investigation. Prediction accuracy was evaluated in terms 
of the average of the standard error of prediction (SEP). 
In that study, the genetic algorithm was merely guided by 
the average of SEPs and the number of frequencies 
selected. 

In the present study, we investigated whether the genetic 
algorithm could be further guided by additionally 
providing information on empirically determined structure 
sensitive regions (Haris, 1999; Haris, 2000). Additionally, 
we were interested in whether the found solution would 
allow for good predictions to be made based on an 
evaluation set of protein spectra never seen during 
training. The general principle of genetic algorithms has 
been described elsewhere, e. g. (Goldberg, 1989). In the 
present paper we make use of the same terminology used 
in our previous paper (Hering et al.  2002) originally 
introduced by John Holland (Holland, 1975). 

2 Materials and Methods 

2.1 Protein reference and evaluation set 
Two independent protein sets are used, a reference set to 
find an optimal composition of amide I frequencies and 
an evaluation set to test the found solution on an 
independent set of proteins not contained in the reference 
set. 

As a reference set we used the same set of 18 FTIR 
spectra from proteins in aqueous solution as used in our 
previous study (Hering et al.  2002). Target fractions of 
secondary structure (in %) as determined by Kabsch and 
Sander's “Database of Secondary Structure in Proteins” 
(DSSP) method (Kabsch and Sander, 1983) as well as the 
corresponding Protein Data Bank (PDB) (Berman et al.  
2000) codes for the proteins of the reference set can be 
found there. A detailed description regarding sample 
preparation and FTIR measurements is given in Lee et 
al.’s paper (Lee et al.  1990). 

For validation of the best solutions found by the genetic 
algorithm based on the reference set, we employed an 
independent set of 13 protein infrared spectra (see 

). These protein spectra were chosen from a set of 
protein spectra kindly provided by Dong et al. (Dong, 
2002) and Keiderling et al. (Keiderling, 2002). Details on 
sample preparation and FTIR measurements can be found 
at the respective internet pages (Dong, 2002; Keiderling, 
2002).

Table 
1
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Protein Species PDB 
Codea 

Kabsch and Sanderc 

   

Spectra 
provided 
byb Helixd Sheete Turn Bend Otherf

Holo-Lactoferrin Human milk 1LFG D 34.3 18.23 18.38 10.71 18.38

Albumin Human serum 1BM0 D 72.6 0 9.42 5.53 12.45

Beta-Lactoglobulin B Bovine milk 1BSQ D 16.05 37.65 9.88 16.67 19.75

Alpha-Lactalbumin (Ca-depleted) Bovine milk 1F6R D 44.67 9.84 17.9 10.38 17.21

Ferritin (Apo) Horse spleen 1IES D 73.4 0.19 7.44 3.53 15.44

Rhodanese Bovine liver 1RHD K 29.69 13.31 16.38 10.92 29.69

Subtilisin Carlsberg Bacillus licheniformis 1SCD D 29.2 19.71 16.42 10.22 24.45

Triose phosphate isomerase Yeast 1YPI K 44.24 16.36 9.49 7.27 22.63

Deoxyribonuclease I Bovine pancreas 3DNI D 28.96 28.57 8.11 10.04 24.32

Gluthathione reductase Wheat germ 3GRS K 34.27 25.16 12.15 9.11 19.31

Trypsin Bovine pancreas 3PTN K 9.87 34.98 14.8 15.25 25.11

Lactate dehydrogenase Rabbit 6LDH K 43.77 17.02 8.51 9.73 20.97

Thermolysin Bacterial 8TLN K 41.07 16.93 10.34 13.48 18.18
a Protein Data Bank code for reference structure (Berman et al.  2000). 
b D: Dong et al. (Dong, 2002); K: Keiderling et al. (Keiderling, 2002) 
c Target fractions of secondary structure (in %) as determined by Kabsch and Sander's DSSP method (Kabsch and 
Sander, 1983). 
d Including α-helix, 310-helix, and π-helix. 
e Including isolated beta bridge and extended strand. 
f Including all structure not explicitly given. 

Table 1 Secondary structure for the evaluation set of proteins as determined by X-ray studies 

Table 1

 

Secondary Structure Protein training set (18 proteins)a Evaluation set (13 proteins)b 

 Helix Sheet Turn Bend Other Helix Sheet Turn Bend Other 

Minimum 3.8 0 5.88 1.96 11.76 9.87 0 7.44 3.53 12.45 

Maximum 80.39 51.53 20.93 17.24 31.73 73.4 37.65 18.38 16.67 29.69 

Mean 27.75 26.62 13.4 9.33 22.9 38.62 18.3 12.25 10.22 20.61 

Standard deviation 21.77 16.84 3.92 4.16 6.21 18.49 11.45 3.98 3.6 4.6 
a Set of protein FTIR spectra from Lee et al. (Lee et al.  1990) 
b Subset of protein FTIR spectra from Dong et al. (Dong, 2002) and Keiderling et al. (Keiderling, 2002) 

Table 2 Distribution of secondary structural conformation (in % structure) as determined by X-ray 
crystallography studies for the18 proteins of the reference set as well as for the 13 proteins of the evaluation set. 

 

We have selected a subset of 13 spectra as the evaluation 
set such that the set of proteins from the reference set and 
the set of proteins from the evaluation set do not contain 
same proteins. Additionally, only those protein spectra 
were selected for validation where target fractions of 
secondary structure fall within the range covered by the 
reference set of proteins (see Table 2). Target fractions of 
secondary structure (in %) were calculated using the same 

method as used for the reference set of proteins. Details 
on the proteins used for the evaluation set are given in 

. 

A statistical characterization of the distribution for each 
secondary structure as calculated by Kabsch and Sander's 
DSSP method (Kabsch and Sander, 1983) for both the 
reference set and the evaluation is given in Table 2. 

 



2.2 The software used 2.5 The frequency selection procedure 
The Stuttgart Neural Network Simulator (SNNS, Version 
4.2) is used for neural network analysis. SNNS is a 
complex simulator for neural networks developed at the 
Institute for Parallel and Distributed High Performance 
Systems at the University of Stuttgart, Germany. 

In the present study, we employed a combination of a 
genetic algorithm and neural network analysis to 
automatically select a set of amide I frequencies. This set 
of frequencies determines a set of absorbance values for 
each protein infrared spectrum to be used for 
quantification of its protein secondary structure by 
providing those values to a neural network analysis. The 
genetic algorithm used in the present study is an 
extension of the genetic algorithm used in our previous 
study where details can be found (Hering et al.  2002). In 
the present study, an additional term has been introduced 
to the fitness function to account for studies on 
empirically determined structure sensitive regions (Haris, 
1999; Haris, 2000). According to those studies, we have 
determined three frequencies, namely, 1654 cm-1, 1630 
cm-1, and 1672 cm-1, as mid points of those structure 
sensitive regions for helix, sheet, and turn structure, 
respectively. Here, we have defined structure sensitive 
regions as intervals +/- 5 frequencies around those mid 
points resulting in 1649-1659 cm-1, 1625-1635 cm-1, and 
1667-1677 cm-1. The fitness of each individual in the 
population is calculated as follows: 

On top of the "batchman" interface provided by SNNS, 
we implemented a simple genetic algorithm using Java 
(JDK 1.3). 

2.3 Prediction accuracy evaluation 
As in our previous study (Hering et al.  2002), the "leave-
one-out" method is used for prediction accuracy 
evaluation during neural network training. It is worth 
noting that for each "leave-one-out" run, the protein left 
out from the analysis for prediction accuracy evaluation is 
not seen by the neural network during training. However, 
since the genetic algorithm on top of the neural network 
training favors "leave-one-out" runs producing good 
SEPs, it guides the neural network analysis towards 
finding a set of weight connections optimal for the 
protein spectra within the reference set. To get a better 
understanding about the true generalization capabilities of 
the best solution found by the genetic algorithm, it was 
evaluated using a separate evaluation set of 13 protein 
infrared spectra not known during training. At the end of 
the genetic algorithm, the best individual found produced 
18 neural networks - one for each protein in the reference 
set left out from the training for evaluation. The 
absorbance values at the frequencies determined by the 
best individual found by the genetic algorithm were 
extracted from each protein spectrum of the evaluation set 
(see Table 1), normalized, and fed through each of the 18 
neural networks. The final prediction for each secondary 
structure was then calculated as the average of predictions 
produced by the 18 neural networks. 
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The "number of frequencies selected from empirical 
regions" was then determined for each individual as the 
number of frequencies that fall into those regions. 
Overall, evaluation of an individual was performed as 
follows: Lower average of SEPs always results in better 
fitness (larger fitness value). If two individuals have the 
same average of SEPs, but their "number of frequencies 
selected from empirical regions" is different, then the 
individual with higher "number of frequencies selected 
from empirical regions" will have better fitness. If two 
individuals have both the same average of SEPs and the 
same "number of frequencies selected from empirical 
regions", but their overall number of frequencies selected 
for neural network training is different, then the 
individual with the lower number of frequencies selected 
will have higher fitness. This way, the genetic algorithm 
is mainly guided by the achieved prediction accuracy in 
terms of the average of SEPs. When prediction accuracy 
amongst individuals is the same, the genetic algorithm is 
encouraged to pursue solutions with as few frequencies 
selected as possible and as many of those frequencies 
stemming from empirically determined structure sensitive 
regions. Since we believe that a selected number of amide 
I frequencies below 10 may not be sensible, we have 
restricted the minimum number of 1's in a chromosome (i. 
e., the number of frequencies selected) to be greater than 
or equal to 10. 

Prediction accuracy is generally measured in terms of the 
standard error of prediction (SEP) which has also been 
employed previously (Lee et al.  1990; Hering et al.  
2002): 
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where pcj = the proportion of structure predicted for 
protein j by the respective method, pxj = the proportion of 
structure calculated from the original X-ray data for 
protein j, and n = the number of proteins in the reference 
set respectively the proteins of the evaluation set. 

2.4 Neural network topology and neural 
network training algorithm 

In the present study, the same basic neural network 
topology trained by the same neural network algorithm is 
used as in our previous study (Hering et al.  2002). The 
number of inputs to the neural network is varied based on 
the number of frequencies selected by the genetic 
algorithm. 

 



3 Results and Discussion 

3.1 Empirical knowledge to guide the genetic 
algorithm towards a better solution 

Based on the fitness function described above, the genetic 
algorithm converged after 1115 generations to its best 
solution where the following 35 frequencies were 
selected (cm-1): 1601, 1603, 1604, 1606, 1608, 1609, 
1611, 1612, 1621, 1624, 1625, 1630, 1631, 1632, 1633, 
1634, 1636, 1638, 1640, 1645, 1646, 1647, 1648, 1652, 
1653, 1655, 1656, 1659, 1663, 1670, 1671, 1676, 1678, 
1680, and 1681. 

Table 3 shows both the results of our previous "automatic 
amide I frequency selection" procedure (Hering et al.  
2002) and the results of the present study based on the 
reference set of protein spectra used during the analysis. 

Results are only shown for the best individuals found. 
Based on a frequency selection pattern of 35 absorbance 
values, minor improvement of the average of SEPs (0.18 
%) was achieved compared to our previous study (Hering 
et al.  2002). 

Reference Helix Sheet Turn Bend Other Avg 

(Hering et al.  
2002) 

4.58 5.72 4.42 3.95 6.12 4.96

Present study 4.42 5.8 4.26 3.71 5.8 4.8

Table 3 Standard errors of prediction (in % 
structure) are given for our previous  study (Hering et 

al.  2002) as well as for the present study. 

Our main interest in the current study was to investigate 
whether providing the genetic algorithm with empirical 
knowledge on structure sensitive regions within the 
amide I band would guide the search towards a better 
solution. Table 3 shows the SEPs achieved in the present 
study as well as the SEPs achieved by our previous study 
where no empirical knowledge on structure sensitive 
regions was embedded in the genetic algorithm's fitness 
function (Hering et al.  2002). Based on our reference set 
of 18 protein infrared spectra, no significant improvement 
could be achieved by additionally providing the genetic 
algorithm with empirical knowledge on structure 
sensitive regions. The average of SEPs could be 
improved by merely 0.18 %. Comparing the set of 
frequencies selected by our previous study (Hering et al.  
2002) with the set of frequencies selected in the present 
study, only 12 frequencies were the same. In the present 
study, a clear shift towards lower frequencies selected 
within the amide I band was observed, where the highest 
frequency selected was 1681 cm-1. In our previous study 
9 frequencies above that value were selected including 
1700 cm-1. For both our previous study (Hering et al.  
2002) and the present study, Table 4 shows the number of 
frequencies that fall in each empirically determined 
structure sensitive region within the amide I band. 

Amide I 
region 
(cm-1) 

Secondary 
structure 

No. of 
frequenciesa, b  

previous 
study (Hering 

No. of 
frequenciesa, b 
present study 

et al.  2002)) 

1648-1660 α-helix 4 (30.77 %) 6 (46.15 %) 

1620-1640 

1670-1695 

β-sheet 14 (29,79 %) 17 (36.17 %) 

1620-1640 

1650-1695 

turn 19 (28,36 %) 23 (34.33 %) 

1640-1657 

1660-1670 

other 8 (27,59 %) 11 (37.93 %) 

1600-1619 

1696-1700 

none of 
the above 

6 (24 %) 8 (32 %) 

No. of frequencies 
selected (best individual) 

29 35 

a Since the regions given are overlapping, same 
frequencies may be assigned to multiple regions. 
b The number in brackets gives the percentage of the 
number of frequencies in relation to the overall number of 
frequencies of the respective structure sensitive region 
within the amide I region. 

Table 4 Empirically determined structure sensitive 
regions. For both our previous "automatic amide I 

frequency selection procedure" and the present study 
the number of frequencies are given that fall in the 

respective regions. The number of frequencies selected 
which do not fall in any of these empirically 

determined regions is also shown. 

The number of frequencies selected outside these 
empirically determined regions are given at the bottom of 
Table 4. From this table, it can be seen that the genetic 
algorithm of the present study did in fact favor a solution 
with more frequencies within structure sensitive regions. 
However, despite the fact, that the solution found in the 
present study is in better agreement with empirical studies 
on structure sensitive regions(Haris, 1999; Haris, 2000), 
no significant improvement in prediction accuracy was 
achieved based on our reference set of 18 protein spectra. 
Table 5 shows the averages of SEPs for the protein 
spectra of the evaluation set based on the evolved set of 
amide I frequencies and neural networks from both the 
present study and our previous study (Hering et al.  
2002). 

The overall average of SEPs achieved by our previous 
study is 4.54 %, which is comparable to that achieved by 
the present study (4.36 %). However, by guiding the 
genetic algorithm towards a set of frequencies within 
empirically determined structure sensitive regions, 
improved predictions were made in the present study for 
helix and sheet structure. For turn structure, no 
improvement in prediction accuracy was observed. This 
is possibly due to the fact that for turn structure, 
assignments are less well defined resulting in a wide 
range of frequencies where turn structure has been found 
to absorb (1620 cm-1 to 1640 cm-1 and 1650 cm-1 to 1695 
cm-1) within the amide I band (Haris, 1999; Haris, 2000). 
However, since overall only minor improvements were 

 



observed, further studies are required to investigate if 
providing empirical knowledge on structure sensitive 

regions has the potential to significantly improve overall 
prediction accuracy. 

 

Protein Species Helixc Sheetd Turn Bend Othere Avg 

Holo-Lactoferrin Human milk 1.9 3.97 4 1.06 6.03 3.39 

Albumin Human serum 10.46 1.74 1.8 0.9 4.99 3.98 

Beta-Lactoglobulin B Bovine milk 2.66 2.46 3.86 6.31 4.07 3.87 

Alpha-Lactalbumin (Ca-depleted) Bovine milk 6.53 1.01 4.01 1.83 5.99 3.87 

Ferritin (Apo) Horse spleen 6.16 1.29 4.33 1.17 3 3.19 

Rhodanese Bovine liver 3.64 4.09 2.1 1.69 5.24 3.35 

Subtilisin Carlsberg Bacillus licheniformis 6.04 8.1 2.2 1.2 1.78 3.87 

Triose phosphate isomerase Yeast 12.83 1.96 5.41 3.27 2.78 5.25 

Deoxyribonuclease I Bovine pancreas 9.88 2.97 6.03 0.86 0.35 4.02 

Gluthathione reductase Wheat germ 4.92 16.18 2.47 1.86 5.04 6.09 

Trypsin Bovine pancreas 6.63 1.91 0.9 4.18 0.83 2.89 

Lactate dehydrogenase Rabbit 2.1 8.99 5.78 1.07 2.74 4.13 

Thermolysin Bacterial 15.11 13.89 2.15 8.48 4.38 8.8 

Average  6.84 5.27 3.46 2.61 3.63 4.36 

Average previous study (Hering et al.  2002)  7.97 5.85 3.3 2.84 2.72 4.54 
a Protein Data Bank code for reference structure (Berman et al.  2000). 
b Target fractions of secondary structure (in %) as determined by Kabsch and Sander's DSSP method (Kabsch 
and Sander, 1983). 
c Including α-helix, 310-helix, and π-helix. 
d Including isolated beta bridge and extended strand. 
e Including all structure not explicitly given. 

Table 5 Standard errors of prediction (in % structure) for each protein of the evaluation set. For each spectrum, 
the frequencies of the best individual found by the GA were extracted, normalized, and fed through each of the 

18 neural networks generated by the "leave-one-out" method. The averages of errors produced by the 18 neural 
networks are given here. 

 

3.2 Generalization 
Merely employing a genetic algorithm in combination 
with neural networks to search for an optimal set of 
amide I frequencies to produce good predictions based on 
a reference set of protein spectra should not be viewed as 
our main goal, but rather an intermediate step. Our 
procedure can only be said to be successful, if it also 
achieves good prediction accuracy based on infrared data 
from any other protein outside the reference set. Hence, 
the best solution found by the present study was 
evaluated using a set of 13 infrared spectra from proteins 
outside the reference set (see Table 1). Standard errors of 
prediction are shown in Table 5, where SEPs are given 
for each protein of the evaluation set along with the 
averages. An overall average of SEPs of 4.36 % was 
achieved. Additionally, averages of SEPs for each 
secondary structure are shown where the spectral data of 
the evaluation set has been presented to the best solution 

found by our previous study (Hering et al.  2002). Here, 
an overall average of SEPs of 4.54 % was achieved. 
Despite the very limited number of protein spectra in the 
reference set (18), good predictions were made resulting 
in average errors (in % structure) of 6.84 %, 5.27 %, 3.46 
%, 2.61 %, and 3.63 %, for helix, sheet, turn, bend, and 
other structure, respectively. Overall, an average error of 
prediction of 4.36 % was achieved. Predictions made for 
sheet, turn, bend, and other structure are even better than 
those made based on the reference set using the "leave-
one-out" method (see Table 3 and Table 5). For helix 
structure, the average of SEPs based on the evaluation set 
was 2.42 % higher. Bearing in mind that the reference set 
and the evaluation set of protein spectra were recorded by 
different groups in different laboratories, the results 
demonstrate that our neural network approach is very 
well capable of dealing with protein spectra recorded in 
different laboratories. 

 



When looking at the prediction errors made for the 
proteins of the evaluation set individually, high variation 
in SEPs is observed. Prediction errors for helix structure 
range from 1.9 % to 15.11 %, for sheet structure from 
1.01 % to 16.18 %, for turn structure from 0.9 % to 8.85 
%, for bend structure from 0.86% to 8.48 %, and for other 
structure from 0.35 % to 6.03 %. This clearly indicates 
that the reference set of protein spectra does not contain a 
sufficiently large number of spectra required to represent 
all spectral features to be able to make consistently good 
predictions for proteins outside the reference set. Table 2 
shows the range of quantities (in % structure) covered by 
the proteins both of the reference set and the evaluation 
set for each secondary structure. The broad ranges for the 
more complex helix and sheet structures underline the 
need for a larger reference set to sufficiently represent all 
spectral variation for the neural network to be able to 
predict any quantity within that range reliably. For the 
less complex turn and bend structures of the reference set, 
however, the ranges of quantities covered are less broad 
(see Table 2). Here, the number of protein spectra in the 
reference set seemed to be sufficient to allow good 
predictions to be made for protein spectra outside the 
reference set. 

4 Summary 
In the present study, we have extended our previously 
reported "automatic amide I frequency selection 
procedure" (Hering et al.  2002) by additionally 
embedding empirical knowledge on structure sensitive 
regions within the amide I band into the fitness function 
to guide the genetic algorithm towards a better solution. 

The fact that both genetic algorithm studies found 
solutions with comparable prediction accuracy but 
substantially different sets of frequencies selected from 
the same set of 18 FTIR spectra of proteins leads to the 
conclusion, that only sub-optimal solutions were found. 
However, this is not surprising bearing in mind the vast 
number of possible solutions of over 2.5*1030 where in 
both our studies only 36030 possible solutions were 
explored. However, in both our previous study (Hering et 
al.  2002) and the present study, the genetic algorithm 
could be guided very rapidly towards solutions based on a 
set of merely 18 FTIR spectra of proteins capable of 
making good predictions about the secondary structure of 
proteins not known during the analysis. Good prediction 
accuracy was demonstrated based on an evaluation set of 
13 protein infrared spectra outside the reference set (see 
Table 5). This clearly demonstrates the potential of our 
approach, once an optimal solution is found. For such an 
optimal solution to be found, there is a need for a 
sufficiently large and representative reference set of 
protein spectra to base our genetic algorithm on, better 
hardware to allow for broader exploration of the search 
space, and possibly further enhancements in the fitness 
function to guide the genetic algorithm towards a better 
solution more rapidly. Once all these criteria are met, our 
genetic algorithm approach will provide us with a 
powerful tool in proteomics research where protein 
secondary structure predictions from FTIR spectra of 

proteins can be generally made with good prediction 
accuracy. 
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